Volcanism drove rapid ocean deoxygenation during the time of the dinosaurs

Volcanism drove rapid ocean deoxygenation during the time of the dinosaurs
Core samples for Oceanic Anoxic Event 1a. A new study from University of British Columbia and University of Hong Kong indicates volcanism drove rapid ocean deoxygenation during the time of the dinosaurs. Credit: Elisabetta Erba.

Ocean deoxygenation during the Mesozoic Era was much more rapid than previous thought, with CO2 induced environmental warming creating ocean ‘dead zones’ over timescales of only tens of thousands of years.

The research from University of British Columbia (UBC) and University of Hong Kong (HKU) Earth scientists paints a new picture of severe ocean deoxygenation events in our planet’s geologic history.

“Physical drivers, in particular ocean warming linked to volcanic activity during the Cretaceous Period, played key roles in triggering and maintaining oceanic anoxia,” says lead researcher Dr. Kohen Bauer, who began the work while at UBC and completed the study with HKU’s Department of Earth Sciences.

“The same mechanisms are also critically important drivers of modern ocean deoxygenation and expanding marine dead zones. Today, in addition to volcanoes releasing CO2 into the atmosphere, humans are as well.”

Previous research tended to focus on the role ocean nutrient cycles played in causing so called ‘dead zones’—a process that would have driven ocean deoxygenation over much longer timescales of hundreds of thousands of years. However, it’s now clear that massive volcanism and its associated feedbacks was a more direct trigger for the rapid development of oceanic anoxia.

The research delved into the causes of Oceanic Anoxic Event 1a—an interval 120 million years ago when large swaths of Earth’s oceans became anoxic. Those conditions likely persisted for almost a million years, causing climate perturbations, and biotic turnover.

The scientists reconstructed the period’s environmental conditions using novel geochemical methods and ancient sediments deposited in both the paleo-Tethys and paleo-Pacific oceans.

“Mesozoic oceanic anoxic events are some of the most important analogs for unlocking lessons about warm-Earth climate states in the geological record,” says UBC’s Dr. Sean Crowe, author on the paper and Canada Research Chair in Geomicrobiology with UBC’s departments of Microbiology and Immunology, and Earth, Ocean and Atmospheric Sciences.

“These events provide enormous potential to help us better understand the sensitivity of the Earth system to perturbations in global biogeochemical cycles, marine biology, and climate on timescales relevant to humankind.”

The paper was published in the journal Geology.


Oxygen loss could be a huge issue for oceans


More information:
Kohen W. Bauer et al, Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a, Geology (2021). DOI: 10.1130/G49065.1

Provided by
University of British Columbia


Citation:
Volcanism drove rapid ocean deoxygenation during the time of the dinosaurs (2021, August 23)
retrieved 24 August 2021
from https://phys.org/news/2021-08-volcanism-drove-rapid-ocean-deoxygenation.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.