Researchers show the cause of productivity loss in the fluctuating light of maize crop canopies

RIPE researchers show the cause of productivity loss in the fluctuating light of maize crop canopies
Maize. Credit: Brian Stauffer/University of Illinois

A team from the University of Illinois has measured the dynamic leakiness of CO2 from C4 plants. Previous studies had measured the leakiness under steady-state conditions, but this group took the measurements to prove that leakiness can and should be measured as a dynamic parameter.

“Last year, we predicted that during photosynthetic induction, C4 cycle activation is faster than the Calvin-Benson cycle, which would cause more CO2 leaking, but we didn’t have any evidence,” said Yu Wang, a postdoctoral researcher at Illinois, who led this work for a research project called Realizing Increased Photosynthetic Efficiency (RIPE). “Now our results prove it’s real. We have the first measurements of the leakiness under dynamic conditions.”

While the group’s previous prediction, published in the Plant Journal last year, was a proven concept, these first-of-their-kind measurements show that their modeling of the C4 and C3 photosynthetic cycles are accurate. Their recent work, studying sorghum and maize, was published in New Phytologist.

“Our research shows that during photosynthetic induction, the activation of C4 cycle is faster than the Calvin-Benson cycle,” said Wang. “This is why leakiness is higher for the first several minutes after the light comes on.”

Wang went on to say that the Calvin-Benson cycle is proven to be slower and has limitations in C4 crops, researchers can work on improving the efficiency and activation speed of the overall process. One option she sees is to make Rubisco activase faster, which will, in turn, make photosynthetic induction faster but says people can think about various ways to improve the response time.

“The results confirm large efficiency losses due to this lack of coordination in the fluctuating light conditions within maize crop canopies,” said RIPE Director Stephen Long, Ikenberry Endowed University Chair of Crop Sciences and Plant Biology at Illinois’ Carl R. Woese Institute for Genomic Biology. “This provides definitive proof of our prediction from modeling that activation of the primary carboxylase, Rubisco, is the key biochemical limitation. The solution we have initiated is up-regulation of Rubisco activase.”


Rubisco proton production can enhance carbon dioxide acquisition


More information:
Yu Wang et al, Increased bundle‐sheath leakiness of CO2 during photosynthetic induction shows a lack of coordination between the C4 and C3 cycles, New Phytologist (2022). DOI: 10.1111/nph.18485

Yu Wang et al, Towards a dynamic photosynthesis model to guide yield improvement in C4 crops, The Plant Journal (2021). DOI: 10.1111/tpj.15365

Provided by
University of Illinois at Urbana-Champaign


Citation:
Researchers show the cause of productivity loss in the fluctuating light of maize crop canopies (2022, October 11)
retrieved 11 October 2022
from https://phys.org/news/2022-10-productivity-loss-fluctuating-maize-crop.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.