Research makes physics of glass formation clearer

Research makes physics of glass formation clearer
Tg and Tx in Mg–Cu–Y. a, c Composition maps determined through FIM: Values vary smoothly and correlate with the pure element melting temperatures. b, d Validation by comparison with literature values Tg,Lit and Tx,Lit: Our FIM values correlate strongly with DSC-based literature values, confirming that FIM yields qualitatively and quantitatively reliable data. Tx values are systematically lower by ~10 °C, indicating a reduced crystallization resistance in the film. Note: In Figs. 3 and 4, black stars represent bulk-glass forming compositions. Triangle markers (near middle star) represent curves in Fig. 2.c.4. Sets of available composition map points can differ. For example, some points available at high Y concentrations in (a) are not available in (c). Here, the expanding films burst before reaching Tx. Credit: Nature Communications (2022). DOI: 10.1038/s41467-022-31314-3

The fragility of liquid—that is, how the fluidity of a liquid changes with temperature—has long been believed to be a key factor in understanding liquids and also how they form into glasses. However, a reliable way to measure fragility in liquids has been elusive. Now, a team of researchers have developed a better way to determine this critical property.

The results are published in Nature Communications.

In the lab of Jan Schroers, professor of mechanical engineering & materials science, the researchers developed a method they call the film inflation method (FIM) that measures the fragility of a wide range of metallic glass-forming liquids. By doing so, not only did the researchers get a clearer sense of the liquids’ properties, but it also contradicted a long-held assumption in the field that a low fragility is better for the formation of metallic glasses, a material that’s stronger than even the best metals, but with the pliability of plastic. These materials owe their properties to their unique atomic structures: when metallic glasses cool from a liquid to a solid, their atoms settle into a random arrangement and do not crystallize the way traditional metals do.

Schroers said the method is a “big step toward” figuring out the tricky physics of metallic glass. The liquid part of the formation process is especially confounding.

“The liquid state is the most difficult state for us to understand, to measure,” he said. “Essentially everything is known about solids, how the atoms arrange, and we can calculate it all on a computer—you almost don’t need to do experiments anymore. Gas is also very easy, because the atoms are so far apart from each other, they don’t really interact. Liquid, as a state, we almost know nothing about it.”

That could change with the new method, which Schroers developed with Sebastian Kube, a former Ph.D. student in his lab and lead author of the study.

“This allows us to extend theories on glass formation, which is one of the biggest mysterious in physics,” he said.


Quicker, more precise way to find metallic glasses


More information:
Sebastian A. Kube et al, Compositional dependence of the fragility in metallic glass forming liquids, Nature Communications (2022). DOI: 10.1038/s41467-022-31314-3

Provided by
Yale University


Citation:
Research makes physics of glass formation clearer (2022, August 25)
retrieved 25 August 2022
from https://phys.org/news/2022-08-physics-glass-formation-clearer.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.