Physicists discover how particles self-assemble

Physicists discover how particles self-assemble

A team of physicists has discovered how DNA molecules self-organize into adhesive patches between particles in response to assembly instructions. Its findings offer a “proof of concept” for an innovative way to produce materials with a well-defined connectivity between the particles.

The work is reported in Proceedings of the National Academy of Sciences.

“We show that one can program particles to make tailored structures with customized properties,” explains Jasna Brujic, a professor in New York University’s Department of Physics and one of the researchers. “While cranes, drills, and hammers must be controlled by humans in constructing buildings, this work reveals how one can use physics to make smart materials that ‘know’ how to assemble themselves.”

Scientists have long sought a means for molecules to self-assemble and have achieved breakthroughs on many fronts. However, less developed are measures in which these tiny particles self-assemble with a preprogrammed number of bonds.

To address this, Brujic and her colleagues, Angus McMullen, a postdoctoral researcher in NYU’s Department of Physics, and Sascha Hilgenfeldt, a professor of mechanical science and engineering at the University of Illinois, Urbana-Champaign, ran a series of experiments to capture—and manipulate—the behavior of DNA molecules on particle surfaces.







The video shows that a blue particle initially binds to three red particles, satisfying its valence at room temperature. Upon heating, those bonds are broken, but upon cooling, the particle finds three red partners again, showing that the particle ‘chooses’ the number of bonds it makes. Their result implies that the DNA bonds between particles are reversible and rearrange on the particle surface to optimize valence. Credit: Angus McMullen/NYU’s Department of Physics

Operating at a micron level—with particles 1/25th the size of a speck of dust—they submerged tiny droplets into a liquid solution. Attached to these droplets were “DNA linkers”—molecular tools possessing “sticky ends” that allow for mixing and matching to form an array of structures desired by the researchers.

“The beauty of this procedure is we can program the properties of a specific material, such that it could be elastic or brittle, or even have self-healing powers once broken, since the bonds can be made and broken reversibly,” observes Brujic. “Creators could decide to put in five particles that stick to only one other one, 10 that stick to two, and 20 that stick to three, or any other combination. This would allow you to build materials with specific topologies or architectures.”


The curious task of watching liquid marbles dry


More information:
DNA self-organization controls valence in programmable colloid design, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2112604118

Provided by
New York University


Citation:
Physicists discover how particles self-assemble (2021, November 1)
retrieved 1 November 2021
from https://phys.org/news/2021-11-physicists-particles-self-assemble.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.