New room-temperature superconductor offers tantalizing possibilities

Scientists announced this month a tantalizing advance toward the dream of a material that could effortlessly convey electricity in everyday conditions. Such a breakthrough could transform almost any technology that uses electric energy, opening new possibilities for your phone, magnetically levitating trains and future fusion power plants.

Usually, the flow of electricity encounters resistance as it moves through wires, almost like a form of friction, and some energy is lost as heat. A century ago, physicists discovered materials, now called superconductors, where the electrical resistance seemingly magically disappeared. But these materials only lost their resistance at unearthly, ultracold temperatures, which limited practical applications. For decades, scientists have sought superconductors that work at room temperatures.

This week’s announcement is the latest attempt in that effort, but it comes from a team that faces wide skepticism because a 2020 paper that described a promising but less practical superconducting material was retracted after other scientists questioned some of the data.

The new superconductor consists of lutetium, a rare earth metal, and hydrogen with a little bit of nitrogen mixed in. It needs to be compressed to a pressure of 145,000 pounds per square inch before it gains its superconducting prowess. That is about 10 times the pressure that is exerted at the bottom of the ocean’s deepest trenches.

But it is also less than one one-hundredth of what the 2020 result required, which was akin to the crushing forces found several thousand miles deep within the Earth. That suggests that further investigations of the material could lead to a superconductor that works at ambient room temperatures and at the usual atmospheric pressure of 14.7 pounds per square inch.

“This is the start of the new type of material that is useful for practical applications,” Ranga P. Dias, a professor of mechanical engineering and physics at the University of Rochester in New York, said to a room packed full of scientists on Tuesday at a meeting of the American Physical Society in Las Vegas.

A fuller accounting of his team’s findings was published Wednesday in Nature, the same journal that published, then retracted the 2020 findings.

The team at Rochester started with a small, thin foil of lutetium, a silvery white metal that is among the rarest of rare earth elements, and pressed it between two interlocking diamonds. A gas of 99% hydrogen and 1% nitrogen was then pumped into the tiny chamber and squeezed to high pressures. The sample was heated overnight at 150 degrees Fahrenheit, and after 24 hours, the pressure was released.

About one-third of the time, the process produced the desired result: a small vibrant blue crystal. “Doping nitrogen into lutetium hydride is not that easy,” Dias said.

In one of the University of Rochester laboratory rooms used by Dias’ group, Hiranya Pasan, a graduate student, demonstrated the surprising hue-changing property of the material during a reporter’s visit last week. As screws tightened to ratchet up the pressure, the blue turned into a blushing tint.

“It is very pink,” Dias said. With even higher pressures, he said, “it goes to a bright red.”

Shining a laser through the crystals revealed how they vibrate and unlocked information about the structure.

For all the latest Business News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.