Site icon TheDailyCheck.net

Researchers discover ferromagnetism induced by defects in correlated 2D materials

Fig. 1. Structural characterization of Ni1−xCoxPS3 (0 ≤ x 1−xCoxPS3 with one pair of neighboring octahedral coordination units (bottom). (B) Powder x-ray diffraction (PXRD) patterns of various Ni1−xCoxPS3 NS samples in comparison with the standard monoclinic NiPS3 (PDF #33-0952) and CoPS3 (PDF #78-0498). The broad peak at 2θ ~26o in all PXRD patterns comes from the carbon cloth. a.u., arbitrary units. (C) Energy-dispersive spectroscopy (EDS) mapping and (D) the corresponding spectrum of a Ni0.68Co0.32PS3 NS show uniform distribution of constituent elements. (E) HAADF-STEM image of a Ni0.68Co0.32PS3 nanosheet collected from the Ni0.68Co0.32PS3 NS sample on carbon cloth shown in the inset SEM image. (F) SAED pattern of the Ni0.68Co0.32PS3 nanosheet along the [001] zone axis. (G) Atomic force microscopy image of a Ni0.68Co0.32PS3 NS transferred onto Si/SiO2 substrate, showing a thickness ~5.6 nm. (G) Raman spectra of various Ni1−xCoxPS3 (0 ≤ x

A weak ferromagnetic (FM) ground state at low temperature in few-layered van der Waals (vdW) magnetic Ni1-xCoxPS3 nanosheets containing sulfur vacancies (Sv) was discovered by a research team led by Prof. He Jun from National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. Jin Song from the University of Wisconsin-Madison. This work was published in Science Advances.

Transition metal phosphorus trichalcogenides (MPX3, X= S or Se; M = Mn, Fe, Co, Ni, etc.), as the representatives of two-dimensional (2D) vdW magnetic materials, have gained wide attention in various fields, including superconductivity, optoelectronics and catalysis. In particular, NiPS3 exhibits intriguing quantum properties owing to the intrinsic strong charge-spin correlation effects. It is an antiferromagnetic (AFM) material with a model Hamiltonian of the XXZ type.

In this study, researchers found that the existence of crystal defects in chemically synthesized Ni1-xCoxPS3 nanosheets, i.e., sulfur vacancies (Sv), could suppress the strong intralayer antiferromagnetic exchange interaction (J3) in NiPS3, and the Co substitution decreases the formation energy of Sv during the synthesis process.

Besides, they found that the conversion synthesis process for the Ni1-xCoxPS3 nanosheets are necessary to promote the formation of Sv. Sv do not seem to exist in sufficient quantity in chemical vapor transport grown single crystal. The presence of Sv in Ni1-xCoxPS3 nanosheets led to the suppression of long-range AFM correlations while other competing ferromagnetic exchange interactions dominate at low temperatures, creating a magnetically frustrated system.

As a consequence, the magnetic field required to tune this defect mediated ferromagnetic state ( several thousand oersted), which made these nanosheets more appealing for spintronic applications.

Theoretically, in correlated NiPS3, the half-filled Ni eg orbitals coupled with half-filled S 3p orbitals, which mediates the electron hooping between neighboring Ni sites through superexchange interaction. Owing to the negative charge transfer energy, the S ligand transfers one electron to the half-filled eg Ni 3d orbital to form a d9L ground state, namely negative charge transfer (NCT) state. NCT state also dominates between antiferromagnetically aligned neighboring Ni atoms. In this case, the presence of Sv could affect the electronic correlation and then tune the magnetic ordering in correlated NiPS3.

These findings provide a less explored route for controlling competing correlated states and magnetic ordering by defect engineering in 2D vdW magnets.


Spintronics: Improving electronics with finer spin control


More information:
Fengmei Wang et al, Defect-mediated ferromagnetism in correlated two-dimensional transition metal phosphorus trisulfides, Science Advances (2021). DOI: 10.1126/sciadv.abj4086
Provided by
Chinese Academy of Sciences


Citation:
Researchers discover ferromagnetism induced by defects in correlated 2D materials (2021, October 25)
retrieved 25 October 2021
from https://phys.org/news/2021-10-ferromagnetism-defects-2d-materials.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – abuse@thedailycheck.net The content will be deleted within 24 hours.
Exit mobile version