Site icon TheDailyCheck.net

Molecular archaeology: What ancient genes tell us about who we are

Molecular archaeology: What ancient genes tell us about who we are

A key scientific breakthrough came with the discovery of this tiny bone. It belonged to a 13-year-old girl whose mother was Denisovan and whose father was a Neanderthal. This has strongly shown that different human species mated with each other and produced offspring when they had the opportunity. Credit: University of Vienna

Using the latest scientific methods, Tom Higham and Katerina Douka from the University of Vienna want to solve a great mystery of human evolution: Why are we the only humans left? Higham and Douka were the first ones to find a first-generation offspring of two different types of human. They continuously publish new results in high impact journals, most recently in Science Advances.

Our ancient cousins are more present in modern human DNA than we thought: Modern humans possess a small proportion of genes from archaic groups like Neanderthals. Every person having a European or Asian background has an average of two percent of Neanderthal DNA in their blood. For persons having an African background, this number is smaller. This explains not only some genetic dispositions in modern humans, it is also proof that different human species had contact more than 40,000 years ago.

Homo sapiens: the only species left out of eight or more?

Examining ancient fragments of bone and teeth is the daily business of molecular archaeologists Tom Higham and Katerina Douka. The two have worked together with others for the last 15 years to understand more about what happened in the crucial Paleolithic period, or Old Stone Age. It is likely that there were at least eight different species of humans on Earth (perhaps even more) between 150,000–30,000 years ago—and they sometimes exchanged genetic material through inter-breeding. “Today is a very unusual time in terms of human evolution.” Tom Higham explains, “For several million years, we shared the planet with different groups of hominins related to us and now it is just us, as well as our great ape cousins.”

“Evolution is like a river of DNA that we can follow back through history and in which we find crosses and links between people”, says Tom Higham while sitting next to Katerina. She is inspecting the teeth of a human skull. Credit: University of Vienna

Discovery of an ancient human hybrid

A tiny bone that Katerina and Tom analyzed from Denisova Cave in Siberia is probably one of their most important discoveries for research on early human history. Katerina Douka explains, “There were fierce debates between groups of researchers over the question of whether different species may have met. Other scientists did not believe that the species did coexist or even met one another.” This situation profoundly changed in 2010 with the publication of the Neanderthal genome, which showed that living people shared some of their DNA. Humans had indeed interbred with Neanderthals.

But how common was this? It seems to have happened more regularly than we thought. “In 2015, we found a tiny human bone fragment using a revolutionary collagen fingerprinting method called ZooMS. Ancient mitochondrial DNA from the bone initially assigned it to a Neanderthal. After fully sequencing it, however, we discovered that it belonged to an estimated 13-year-old girl whose mother was Neanderthal, but whose father was Denisovan. This was the first time anyone has ever found a so-called ‘F1 hybrid,’ a first-generation offspring of two different types of human,” explains Katerina Douka.

“Before 2010, such analyses were not possible because the methods did not exist then. We can now take a few milligrams of powder from tiny archaeological bone fragments and identify the bones to species, thereby finding potential human bone fragments hiding, like this little Denisovan bone. It is quite incredible how methods of examining human remains have improved so dramatically,” says Tom Higham. “The last 20 years have seen an explosion of the methods we can apply to answer key archaeological questions.”


Molecular analysis reveals the oldest Denisovan fossils yet


More information:
Ludovic Slimak et al, Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France, Science Advances (2022). DOI: 10.1126/sciadv.abj9496

Viviane Slon et al, The genome of the offspring of a Neanderthal mother and a Denisovan father, Nature (2018). DOI: 10.1038/s41586-018-0455-x

Provided by
University of Vienna


Citation:
Molecular archaeology: What ancient genes tell us about who we are (2022, June 2)
retrieved 2 June 2022
from https://phys.org/news/2022-06-molecular-archaeology-ancient-genes.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – abuse@thedailycheck.net The content will be deleted within 24 hours.
Exit mobile version