New study examines variability of water, carbon in Missouri agriculture ecosystems and future impact on crops

New MU study examines variability of water, carbon in Missouri agriculture ecosystems and future impact on crops
An eddy covariance tower, a tool which measures the breathing capacity of an ecosystem, sits in Tucker Prairie, Missouri’s largest remaining virgin tall-grass prairie. Credit: Jeffrey Wood

One of the main reasons plants use water is to allow them to absorb carbon dioxide from the atmosphere. This means that in plants, the water and carbon cycles are tightly linked. In a new study, researchers from the University of Missouri and the United States Department of Agriculture (USDA) have used this foundational principle to identify sustainable farming practices aimed at helping staple crops like corn and soybeans thrive during extreme weather conditions that have become more common in the Midwest.

The research was published in Agriculture and Forest Meteorology.

This study examined how farming practices affect crop resilience to climate change by examining water and carbon fluxes in three contrasting ecosystems: a business-as-usual tilled cropping system, an aspirational no-till cropping system with cover crops, and a native tallgrass prairie ecosystem.

“One of the big goals is what we call climate-smart agriculture, which can mean using crops to absorb carbon out of the air, but it also means trying to adopt farming practices that help farms adapt to the changing climate,” USDA research hydrologist Adam Schreiner-McGraw said. “As it gets hotter, plants get more stressed, and that means they often have lower yields. This research is focused on understanding adaptation and how to work toward more resilient agro-ecosystems.”

A comparison of rates of evapotranspiration—when water transfers from the land to the atmosphere— and carbon dioxide exchange revealed interesting patterns among ecosystems. In an analysis of data collected over the past four-year cycle, the native prairie ecosystem had higher rates of evapotranspiration than the tilled cropping system. In comparison, however, the prairie’s rate of evapotranspiration didn’t differ much from that of the no-till cropping system. Further, both cropping systems had higher amounts of plant growth (i.e., carbon uptake) than the native prairie.

New MU study examines variability of water, carbon in Missouri agriculture ecosystems and future impact on crops
This aspirational plot, covered by a soybean crop, houses its own eddy covariance “flux tower” device. Credit: Jeffrey Wood

From these findings, the tilled cropping site appears the most sensitive to environmental changes compared to the native prairie, which is most resilient to extreme weather, Schreiner-McGraw, who works in the USDA’s Cropping Systems and Water Quality Research Unit on MU’s campus, said. Moreover, because the no-till system has the most crop diversity, including corn, soybeans, wheat, and hay, it had the most variable rates of evapotranspiration. This phenomenon Schreiner-McGraw attributes to agricultural management strategies.

Understanding variable rates of evapotranspiration help scientists weigh whether the “planned” management has a bigger impact on the water and carbon budgets than the “unplanned” weather variability, which can help with predictions for crop water and carbon uptake as extreme weather gets worse.

Another way to build environmental resistance is to plant a diversified rotation of crops over the long term, said Jeffrey Wood, an assistant professor in the MU School of Natural Resources. As climate fluctuations intensify—for Missouri, that’s warmer, wetter winters and drier summers with less frequent rain—understanding how best to support crop adaptation and which crops to plant at what times of the year has become increasingly necessary.

“The type of work we do lends itself to collaboration because we all share data in a community-based network,” Wood said, “People are always willing to share ideas, which makes it easy to work together and contribute to research that expands in scope from the problems one researcher might be working on locally to those another might face on a bigger scale.”

Co-authors include Megan E. Metz, John Sadler and Kenneth Sudduth.

More information:
Adam P. Schreiner-McGraw et al, Agriculture accentuates interannual variability in water fluxes but not carbon fluxes, relative to native prairie, in the U.S. Corn Belt, Agricultural and Forest Meteorology (2023). DOI: 10.1016/j.agrformet.2023.109420

Provided by
University of Missouri


Citation:
New study examines variability of water, carbon in Missouri agriculture ecosystems and future impact on crops (2023, June 21)
retrieved 21 June 2023
from https://phys.org/news/2023-06-variability-carbon-missouri-agriculture-ecosystems.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Science News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TheDailyCheck is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected] The content will be deleted within 24 hours.